
RCP Database Interactions

Version 2.3
This document presents the database interface of the RCP

system. The interface is used by all RCP database implementa-
tions.

2

RCP Database Interactions

Version 2.3

Marc Paterno
University of Rochester

KEY TO RECENT CHANGES

Version 2.3

1. Removed RCPVal ue: : f i l l Fr om(const RCPScr i pt & v) because it
introduced unwanted coupling. This behavior will now belong to RCPScript.

2. Minor changes to explanation of put (RCPVal ue& val) in both RCPDa-
tabaseServices and AbsRCPDatabase.

3. Change from st d: : st r i ng to const char * in required argument for con-
structor for classes inheriting from AbsRCPDatabase.

4. All “counting” functions return si ze_t , rather than i nt .

5. All functions in AbsRCPDatabase are now pure virtual functions.

6. Made RCPValue contain a st d: : l i s t of all relevant RCPNames, rather than
a single name; added si ze_t numNames() const function to RCPValue;
replaced RCPName name() const wi t h voi d names(RCPNameLi st &
names) const .

7. Add function vi r t ual bool i sWr i t eabl e() const = 0 to the inter-
face of AbsRCPDatabase.

8. Add r emove… functions to RCPValue.

Version 2.2

1. Addition of extra functions to RCPValue interface, allowing queries of the num-
ber of each type of contained object, and the names of the contained objects.

INTRODUCTION AND TERMINOLOGY

This document specifies the interactions of the RCP system with all RCP database imple-
mentations.

In the following, we carefully distinguish between RCPs (instances of the class RCP);
RCPValues (instances of the class RCPValue), RCP scripts (text files used to describe an RCP)
and RCP database entries (the representations of an RCP objects in a specific physical database).

3

Glossary
The following list of terms is presented in order

Parameter set: the collection of name/value pairs in an RCPValue object.

RCPName: a set of four strings: package name, object name, version, and database name.

RCPID: a unique identifier for a parameter set.

RCPValue: the object containing a parameter set, and RCPID, and an RCPName.

RCP: an RCPValue object, wrapped in a read-only shell. This is form in which parameter
sets are presented to users.

RCPHashKey: a not-quite-unique identifier, calculated by an RCPValue, from the contents
of its parameter set.

Database piece: group of tables in a database, which contain related parameter RCPValue
objects. Different database pieces may or may not reside in different physical databases.

Concrete database object: an instance of a subclass of AbsRCPDatabase.

RCP CLASSES RELEVANT TO THE DATABASES

The database interactions of the RCP package are encapsulated in a single abstract base class,
AbsRCPDatabase, from which concrete RCP database classes are derived by subclassing. These
subclasses are used, through the AbsRCPDatabase interface, by the class RCPDatabaseServi-
ces. The RCP database objects will be constructed by a factory on behalf of the RCPManager,
which is responsible for managing all interactions with the physical database represented, within
a program, by an RCP database object. Users of the RCP system do not interact directly with the
database.

The purpose of the RCPDatabaseServices class is to provide the database services needed
by the RCPManager, through a simple interface. The purpose of the AbsRCPDatabase class is
to simplify the job of the concrete subclasses, by factoring out the behavior common to all such
subclasses.

The things manipulated by the AbsRCPDatabase interface are RCPValue objects. An
RCPValue object contains the data for a single RCP object and an interface to query and modify
the contained data.

Each RCP database entry is associated with a unique RCPID identifier. Each distinct physi-
cal database is associated with a unique database identifier, which is also contained in the
RCPID. We note that a copy of a database is not distinct from the master from which it was made
because the copy can be used only in read-only mode. Write access is available only for the mas-
ter version. A RCPHashKey represents the “hash value” associated with an RCPValue object.
This value will be used as a non-unique (but as close to unique as can reasonably be achieved)
key to find RCP database entries. The RCPHashKey associated with an RCPValue can be cal-
culated from the RCPValue object alone, using only the (name, value) pairs it contains, and not
using the associated RCPID. RCPHashKey is currently a typdef for unsigned int — a 16-bit
CRC. It has been made a typedef so that this may be changed, if necessary, with little effort.

4

PROGRAMMATIC REPRESENTATION OF DATABASES AND PARTS OF

DATABASES

The representation of a physical database, or of a portion of a database, to the RCP system is
via an instance of a subclass of AbsRCPDatabase — a concrete RCP database object. It is criti-
cal to the functioning of the RCP system that the correct association be made between each con-
crete RCP database object and the physical database, or portion thereof, it represents. It is sim-
plest to explain the requirements through an example.

Consider a single Oracle database containing all the RCP database entries for DØ. The tables
in this database are organized into groups.

�
 One group of tables for officially released RCPs — named “official” .

�
 Two groups of tables, one for the Higgs physics group and one for the QCD

physics group — named “higgs” and “qcd” .
�

 Two groups of tables, one for each of two users, Jack and Jill — named “ jack”
and “ jill” .

We shall call each of these groups of tables a database piece. Each database piece has an as-
sociated name (a string), and an associated RCPDatabaseID. The master Oracle database is re-
sponsible for issuing unique names and RCPDatabaseIDs for database pieces.

 In any program, we want to make sure that we have only one programmatic representation of
each database piece. So, when we create an instance of OracleRCPDatabase (a subclass of
AbsRCPDatabase), we want to connect it with a specific database piece, which we specify by
giving the name of the database piece to the constructor, as follows:

Or acl eRCPDat abase j acksDB(“ j ack”) ;

The RCP system will make use of this constructor to assure that all RCPManagers in a sin-
gle program that want to talk to a specific database piece do so through the same concrete data-
base object.

RESPONSIBILITIES OF RCPDATABASESERVICES AND ABSRCPDATABASE

The RCPDatabaseServices class exists to provide a common implementation of the func-
tions related specifically to the behavior required of the RCP system. The AbsRCPDatabase
classes, and its concrete subclasses, are to perform only the database-specific (including the cli-
ent/server nature) parts of this behavior.

To be more specific:

�
 RCPDatabaseServices provides caching of RCPValue objects that are extracted

from the AbsRCPDatabase object. A concrete database class does not have to
implement this caching.

�
 When an RCPManager requests an RCPValue that matches the contents of a

given RCPValue (by supplying a complete RCPName and a valid RCPID), it is
the RCPDatabaseServices class that determines which of the possible matches,
if any, is the correct one. The AbsRCPDatabase class is responsible only for (1)
telling how many parameter sets match a given hash key, and (2) returning all the
parameter sets matching that has key.

5

�
 A concrete subclass (or subclasses) of AbsRCPDatabase is responsible for pro-

viding the client/server nature of the database connection. An RCPDatabase-
Services object talks only to an instance of a subclass of AbsRCPDatabase
which exists in the same process. The details of how the client/server implemen-
tation is done is up to the implementer of the concrete AbsRCPDatabase sub-
class.

UNIQUENESS OF RCPNAMES AND RCPIDS

The class RCPName exists in order to provide a human-friendly method of referring to a
particular parameter set. The class RCPID exists in order to provide a concise and unique method
of referring to a particular parameter set.

The mapping from RCPID to parameter set is one-to-one: each parameter set has exactly one
RCPID, and each RCPID refers to a one parameter set.

The mapping of RCPName to parameter set is many-to-one: each parameter set can have
many names (it must have at least one), but each RCPName must refer to a single parameter set.

An RCPName object has several components, each of which is a string: a package name, and
object name, a version, and a database name. For parameter sets which are entered into the data-
base through the release mechanism, the version means the version name of the DØ software re-
lease. For parameter sets entered by any other mechanism (such as a WWW interface), the as-
signment of the version name will be done by the database. The database name is the name asso-
ciated with the database piece in which the parameter set resides.

6

CLASS INTERFACES

typedefs
These are the typedefs defined and used by the RCP system.

t ypedef unsi gned i nt RCPHashKey;

t ypedef unsi gned i nt RCPDat abaseI D;

t ypedef st d: : l i st <RCPVal ue> RCPVal ueCol l ect i on;

t ypedef st d: : l i st <RCPName> RCPNameLi st ;

RCPValue
The RCPValue class is the programmatic view of a parameter set. It provides
methods to access and add to the values in the parameter set. It also carries the
associated RCPID and RCPName objects.

Memory Management

Create an empty RCPValue, with an invalid RCPID and an empty
RCPNameList.
RCPVal ue() ;

Create an RCPValue with the given RCPID, and and empty RCPNameList.
RCPVal ue(const edm: : RCPI D& i d) ;

Copy constructor.
RCPVal ue(const RCPVal ue& r hs) ;

Assignment operator.
RCPVal ue& oper at or =(const RCPVal ue& r hs) ;

Destructor.
~RCPVal ue() ;

Testing

Equality test compares for equality of contained parameter sets.
bool oper at or == (const RCPVal ue& r hs) const ;

Helper function used by equality test operator.
bool sameCont ent sAs(const RCPVal ue& val) const ;

Negation of operator==().
bool oper at or ! =(const RCPVal ue& r hs) const ;

Return true if the RCPValue contains any value with the given name.
bool cont ai nsName(st d: : st r i ng name) const ;

Each of the following tests returns true if the RCPValue contains a value of the
given type with the given name.
bool cont ai nsBool (st d: : st r i ng name) const ;

bool cont ai nsI nt (st d: : st r i ng name) const ;

bool cont ai nsFl oat (st d: : st r i ng name) const ;

7

bool cont ai nsSt r i ng(st d: : st r i ng name) const ;

bool cont ai nsRCPI D(st d: : st r i ng name) const ;

bool cont ai nsVBool (st d: : st r i ng name) const ;

bool cont ai nsVI nt (st d: : st r i ng name) const ;

bool cont ai nsVFl oat (st d: : st r i ng name) const ;

bool cont ai nsVSt r i ng(st d: : st r i ng name) const ;

bool cont ai nsVRCPI D(st d: : st r i ng name) const ;

Manipulation and access

Each get… function either returns the value matching the name, or, if none
matches, throws an XRCPNotFound exception. Each add… function first tests to
see whether any value (not just a value of the given type) with the given name is
already stored; of so, an XRCPDuplicate exception is thrown. If not, then the
given value is stored with the given name.Each remove… function removes a
value of the given name and type, and returns true; if no value of the given name
and type is found, it returns false without modifying the contents.
bool get Bool (st d: : st r i ng name) const ;

voi d addBool (st d: : st r i ng name, bool val ue) ;

bool r emoveBool (st d: : st r i ng name) ;

st d: : vect or <bool > get VBool (st d: : st r i ng name) const ; bool

voi d addVBool (st d: : st r i ng name, const st d: : vect or <bool >& val ue) ;

bool r emoveBool (st d: : st r i ng name) ;

i nt get I nt (st d: : st r i ng name) const ;

voi d addI nt (st d: : st r i ng name, i nt val ue) ;

bool r emoveI nt (st d: : st r i ng name) ;

st d: : vect or <i nt > get VI nt (st d: : st r i ng name) const ;

voi d addVI nt (st d: : st r i ng name, const st d: : vect or <i nt >& val ue) ;

bool r emoveVI nt (st d: : st r i ng name) ;

f l oat get Fl oat (st d: : st r i ng name) const ;

voi d addFl oat (st d: : st r i ng name, f l oat val ue) ;

bool r emoveFl oat (st d: : st r i ng name) ;

st d: : vect or <f l oat > get VFl oat (st d: : st r i ng name) const ;

voi d addVFl oat (st d: : st r i ng name,
const st d: : vect or <f l oat >& val ue) ;

bool r emoveVFl oat (st d: : st r i ng name) ;

st d: : st r i ng get St r i ng(st d: : st r i ng name) const ;

voi d addSt r i ng(st d: : st r i ng name, st d: : st r i ng val ue) ;

bool r emoveSt r i ng(st d: : st r i ng name) ;

8

st d: : vect or <st d: : st r i ng> get VSt r i ng(st d: : st r i ng name) const ;

voi d addVSt r i ng(st d: : st r i ng name,
const st d: : vect or <st d: : st r i ng>& val ue) ;

bool r emoveVSt r i ng(st d: : st r i ng name) ;

edm: : RCPI D get RCPI D(st d: : st r i ng name) const ;

voi d addRCPI D(st d: : st r i ng name, const edm: : RCPI D& val ue) ;

bool r emoveRCPI D(st d: : st r i ng name) ;

st d: : vect or <edm: : RCPI D> get VRCPI D(st d: : st r i ng name) const ;

voi d addVRCPI D(st d: : st r i ng name,
const st d: : vect or <edm: : RCPI D>& val ue) ;

bool r emoveVRCPI D(st d: : st r i ng name) ;

Return the RCPID that identifies this RCPValue.
edm: : RCPI D myRCPI D() const ;

Set the RCPID for this RCPValue. The precondition is that the given RCPID be
valid.
voi d set RCPI D(const edm: : RCPI D& i d) ;

Get the RCPNames for this RCPValue.
voi d names(RCPNameLi st & names) const ;

Set the RCPNames for this RCPValue. The precondition is that each name in the
given RCPNameList be complete.
voi d set Names(const RCPNameLi st & names) ;

Add the given RCPName to those for this RCPValue. The precondition is that
the new RCPName must be complete.
voi d addName(const RCPName& name) ;

Return the hash key for the parameter set contained in this RCPValue.
RCPHashKey hash() const ;

Helper function used to compute the hash value for the contained parameter set.
RCPHashKey comput eHash() const ;

Return the number of parameters of each type stored in the parameter set.
si ze_t numBool s() const ;

si ze_t numVBool s() const ;

si ze_t numI nt s() const ;

si ze_t numVI nt s() const ;

si ze_t numFl oat s() const ;

si ze_t numVFl oat s() const ;

si ze_t numSt r i ngs() const ;

si ze_t numVSt r i ngs() const ;

si ze_t numRCPI Ds() const ;

si ze_t numVRCPI Ds() const ;

9

Return the total number of parameters stored in the parameter set.
si ze_t numEnt r i es() const ;

Fill the vector names with the names of all parameters of the given type in the
parameter set.
voi d get Bool Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get VBool Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get I nt Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get VI nt Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get Fl oat Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get VFl oat Names(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get St r i ngNames(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get VSt r i ngNames(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get RCPI DNames(st d: : vect or <st d: : st r i ng>& names) const ;

voi d get VRCPI DNames(st d: : vect or <st d: : st r i ng>& names) const ;

Fill the vector names with the names of all the parameters within this RCPValue
object.
voi d get Names(st d: : vect or <st d: : st r i ng>& names) const ;

Output

Print output to stream os, in a form useful for debugging.
voi d dump(st d: : ost r eam& os) const ;

Print output to stream os, in a form useful for display of the contents.
f r i end st d: : ost r eam& oper at or <<(st d: : ost r eam& os,

const RCPVal ue& r) ;

RCPName
Each RCPName maps to exactly one parameter set, but one parameter set may
be associated with more than one RCPName.

Memory management

Constructor.
RCPName(st d: : st r i ng pkgname, st d: : st r i ng obj name,

st d: : st r i ng r el ease = “ ” , st d: : st r i ng dbname = “ ”) ;

Testing

Return true if this RCPName has all of (pkgname, objname, release, dbname) as
non-empty strings; return false if one or more is an empty string.
bool i sCompl et e() const ;

Manipulation and access

st d: : st r i ng pkgName() const ;

voi d set PkgName(st d: : st r i ng pkgname) ;

st d: : st r i ng obj Name() const ;

voi d set Obj Name(st d: : st r i ng obj name) ;

10

st d: : st r i ng r el ease() const ;

voi d set Rel ease(st d: : st r i ng r el ease) ;

st d: : st r i ng dbName() const ;

voi d set DBName(st d: : st r i ng dbname) ;

RCPID
Each RCPID is the unique identifier for a parameter set.

Memory management

Create an invalid RCPID.
RCPI D() ;

Create a valid RCPID.
RCPI D(unsi gned i nt ser i al number ,

const RCPDat abaseI D& dat abaseI D) ;

Testing

bool i sVal i d() const ;

Return true if this RCPID was issued by the “ official” database piece.
bool i sOf f i ci al () const ;

RCPDatabaseServices
This class is the interface to be used by all clients requiring the services of an
RCP database. One instance of RCPDatabaseServices is associated with one
database piece, as described above. RCPDatabaseServices collaborates with
RCPManager and shares the knowledge of how parameter sets are managed.
This class relies on an instance of a concrete subclass of AbsRCPDatabase to
perform actual communication with an external database.

Testing

Return true if the db contains a parameter set with this id.
bool has(const edm: : RCPI D& i d) ;

Return true if the db contains a parameter set which matches that of val.
bool has(const RCPVal ue& val) ;

Return the number of parameter sets matching this (possibly incomplete) name.
si ze_t count (const RCPName& name) ;

Access

If the db contains a parameter set with this ID, set the contents of val to match,
and return true. If the db does not contain a match, do not modify val, and return
false. If this function returns true, then val is assured to have a complete
RCPName and a valid RCPID.
bool get (const edm: : RCPI D& i d, RCPVal ue& val) ;

11

Fill the collection with all those RCPValues that match the given (possibly in-
complete) RCPName, and return true. This requires (1) making default (empty)
RCPValues, (2) setting their contents with the various add… functions, and (3)
inserting the appropriate RCPIDs and RCPNames. If no matching RCPValues
are found, return false and do not modify the collection values.
bool get (const RCPName& name, RCPVal ueCol l ect i on& val ues) ;

If possible, complete the given RCPValue. If an entry in the db has a parameter
set matching that of val, then set the RCPName and RCPID of val to be the same
as that of the entry in the db and return true. If no entry in the db has a parame-
ter set matching that of val, return false and do not modify val. Note that the de-
termination of matching contents makes use of the hash key, which val can gen-
erate, and so an exhaustive test for equality is required only when the hash keys
are equal. Note also that RCPValue has an equality test function that is used to
perform the equality test. This equality test makes use of the hash key test, so it is
not necessary to perform this test before testing two RCPValues for equality.
bool get (RCPVal ue& val) ;

Add a parameter set equal to the one within val to the db. Modify val to have a
valid RCPID (issued by the db, to assure uniqueness) and to have a complete
RCPName, and return true. The RCPName may have to be completed by the db
by inserting the database name, and perhaps a version, again to assure unique-
ness. If the new parameter set cannot be added to the database, or if a new
unique RCPID cannot be issued, or if the RCPName cannot be completed
uniquely, return false and do not modify val.
bool put (RCPVal ue& val) ;

AbsRCPDatabase
This is an abstract class that defines the interface for all concrete database ob-
jects. Any client/server behavior of the database connection must be imple-
mented in subclasses of this class.

Each class that inherits from AbsRCPDatabase is required to have a single-
argument constructor that takes a const char * ; this string is used to deter-
mine which database piece is represented (and communicated with) by the con-
structed object.

Memory management

Destructor
vi r t ual ~AbsRCPDat abase() = 0;

Testing

Return true if the db contains an entry with this ID.
vi r t ual bool has(const edm: : RCPI D& i d) const = 0;

Return the number of db entries matching this name. Note that the name may be
incomplete; this is why more than one match is possible.
vi r t ual si ze_t count (const RCPName& name) const = 0;

Return the number of db entries matching this hash key.
vi r t ual si ze_t count (const RCPHashKey& key) const ;

Return true if writing to this db is allowed.
vi r t ual bool i sWr i t eabl e() const = 0;

12

Manipulation and access

Fill the given RCPValue with the parameter set specified by the given RCPID,
insert the appropriate RCPID and RCPName, and return true. If no match is
found, return false and do not modify val.
vi r t ual bool get (const edm: : RCPI D& i d,

RCPVal ue& val) const = 0;

Fill the collection with RCPValues that match the given hash key, and return
true. This requires (1) making default (empty) RCPValues, (2) setting their con-
tents with the various add… functions, and (3) inserting the appropriate RCPIDs
and RCPNames. If no matching RCPValues are found, return false and do not
modify the collection values.
vi r t ual bool get (const RCPHashKey& key,

RCPVal ueCol l ect i on& val ues) const = 0;

Fill the collection with RCPValues that match the given (possibly incomplete)
RCPName. This requires (1) making default (empty) RCPValues, (2) setting
their contents with the various add… functions, and (3) inserting the appropriate
RCPIDs and RCPNames. If no matching RCPValues are found, return false and
do not modify the collection values.
vi r t ual bool get (const RCPName& name,

RCPVal ueCol l ect i on& val ues) const = 0;

Add a parameter set equal to the one within val to the db. Modify val to have a
valid RCPID (issued by the db, to assure uniqueness) and to have a complete
RCPName, and return true. The RCPName may have to be completed by the db,
by inserting the database name, again to assure uniqueness. If the new parameter
set cannot be added to the database, or if a new unique RCPID cannot be issued,
or if the RCPName cannot be completed uniquely, return false and do not modify
val.
vi r t ual bool put (RCPVal ue& val) = 0;

Output

Print output useful for debugging to stream os.
vi r t ual voi d dump(st d: : ost r eam& os) const = 0;

